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Abstract

We rarely experience difficulty picking up objects, yet of all potential contact points on the

surface, only a small proportion yield effective grasps. Here, we present extensive behav-

ioral data alongside a normative model that correctly predicts human precision grasping of

unfamiliar 3D objects. We tracked participants’ forefinger and thumb as they picked up

objects of 10 wood and brass cubes configured to tease apart effects of shape, weight, ori-

entation, and mass distribution. Grasps were highly systematic and consistent across repe-

titions and participants. We employed these data to construct a model which combines five

cost functions related to force closure, torque, natural grasp axis, grasp aperture, and visibil-

ity. Even without free parameters, the model predicts individual grasps almost as well as dif-

ferent individuals predict one another’s, but fitting weights reveals the relative importance of

the different constraints. The model also accurately predicts human grasps on novel 3D-

printed objects with more naturalistic geometries and is robust to perturbations in its key

parameters. Together, the findings provide a unified account of how we successfully grasp

objects of different 3D shape, orientation, mass, and mass distribution.

Author summary

A model based on extensive behavioral data unifies the varied and fragmented literature

on human grasp selection by correctly predicting human grasps across a wide variety of

conditions.

Introduction

In everyday life, we effortlessly grasp and pick up objects without much thought. However,

this ease belies the computational complexity of human grasping. Even state of the art robotic

AIs fail to grip objects nearly 20% of the time [1]. To pick something up, our brains must work

out which surface locations will lead to stable, comfortable grasps, so we can perform desired

actions (Fig 1A). Most potential grasps would actually be unsuccessful, e.g., requiring thumb
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and forefinger to cross, or failing to exert useful forces (Fig 1B). Even many possible grasps

would be unstable, e.g., too far from the object’s center, so it rotates when lifted (Fig 1C).

Somehow, the brain must infer which, of all potential grasps, would actually succeed. Despite

this, we rarely drop objects or find ourselves unable to complete actions because we are hold-

ing them inappropriately. How does the brain select stable, comfortable grasps onto arbitrary

3D objects, particularly objects we have never seen before?

Despite the extensive literature describing human grasping patterns, movement kinematics,

and grip force adjustments [2–14], little is understood about the computational basis of initial

grasp selection. Few authors have attempted to study and model how humans select grasps

(e.g. [15,16]), and even then, only for 2D shapes. This is because, even for two-digit precision

grip, many factors influence grasping. Object shape must be considered, since the surface nor-

mals at contact locations must be approximately aligned (a concept known as force closure

[17]), otherwise the object will slip through our fingertips (Fig 1B, bottom). Object mass and

mass distribution must be evaluated, since for grips with high torques (i.e. far from the center

of mass, CoM [18–22]) the object will tend to rotate under gravity and potentially slip out of

our grasp (Fig 1C, top). The orientation [19,22–25] and size [26] of grasps on an object must

be considered, since the arm and hand can move and apply forces only in specific ways. Grasps

that do not conform to the natural configuration of our hand in 3D space might be impossible

(Fig 1B, top), or uncomfortable (Fig 1C, bottom). The hand’s positioning may also determine

an object’s visibility [9, 27–30].

Most previous research did not assess the relative importance of these factors, nor how they

interact. Here we sought to unify these varied and fragmented findings into a single normative

framework. We therefore constructed a rich dataset in which we could tease apart how an

object’s 3D shape, mass, mass distribution, and orientation influence grasp selection. We

devised a set of objects made of wood and brass cubes in various configurations (Fig 2), and

asked participants to pick them up with a precision grip, move them a short distance and place

Fig 1. The computational complexity of human grasp selection. (a) Possible (b) Impossible (c) Possible but uncomfortable or unstable grasps.

https://doi.org/10.1371/journal.pcbi.1008081.g001
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them at a target location, while we tracked their thumb and forefinger. We measured initial

contact locations (i.e. not readjusted contact regions during movement execution). By varying

the shapes and orientation of the objects in Experiment 1, we (i) determined how consistent at

selecting grasp locations participants are with themselves and other people, and (ii) measured

the interactions between allocentric 3D shape and egocentric perspective on those shapes. If

actors take the properties of their own effectors into account (e.g., hand orientation, grasp

size), we should expect the same shape to be grasped at different locations depending on its

orientation relative to the observer [19]. In Experiment 2, we varied the mass and mass distri-

bution of the objects (Fig 2C) to test the relative role of 3D shape and mass properties. If partic-

ipants take torques into account, identical shapes with different mass distributions should

yield systematically different grasps [18,20–22].

Next, we employed this rich dataset to develop a computational model to predict human

grasp patterns. We reasoned that grasps are selected to minimize costs associated with instabil-

ity and discomfort. Accordingly, we implemented a model that combines five factors com-

puted from the object’s shape, mass distribution, and orientation: (i) force closure [17], (ii)

torque [18–22] (iii) natural grasp axis [19,23–25], (iv) natural grasp aperture for precision grip

[26] and (v) visibility [27,28]. The model takes as input a near-veridical 3D mesh representa-

tion of on object to be grasped, performs free-body computations on the mesh, and outputs

minimum-cost, optimal grasp locations on the object. We found that the optimal grasps pre-

dicted by the model matched human grasp patterns on the wooden and brass polycube objects

from Experiments 1 and 2 strikingly well. We then employed the model to generate predic-

tions regarding where humans should grasp novel shapes with curved surfaces. In a final

Experiment 3, we had participants grasp these novel 3D-printed, curved, plastic objects.

Human grasps well aligned with the model predictions. Finally, we employed these data to

show that model predictions are robust to perturbations in the model input and key

parameters.

Fig 2. Setup and stimuli for Experiments 1 and 2. (a) Experimental setup. Seated participants performed grasping movements with their right hand. Following an

auditory signal (coinciding with the shutter window turning transparent) they moved from one of the starting positions to the object and grasped it with a precision

grip. They transported and released the object at the goal position and returned to the start position. (b) In Experiment 1 we employed four objects made of wooden

cubes. Each object had a unique shape (that here we name L, U, S, V) and was presented at one of two different orientations with respect to the participant. (c) In

Experiment 2 the objects had the same shapes as in Experiment 1, but now were made of wood and brass cubes. The brass and wood cubes were organized either in an

alternate pattern (middle), so that the CoM of the object would remain approximately the same as for the wooden object, or grouped so that the CoM would be shifted

either closer to (right) or away from (left) the participant’s hand starting location.

https://doi.org/10.1371/journal.pcbi.1008081.g002
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Results

Experiment 1: 3D shape and orientation

Human grasps are tightly clustered and represent a highly constrained sample from the

space of potential grasps. Twelve participants grasped four objects made of beech wood pre-

sented at two orientations (Fig 2A and 2B; see Materials and methods). Fig 3A shows how

grasp patterns tend to be highly clustered. In each condition, different grasps have similar sizes

(finger-to-thumb distance) and orientations, and also cover the same portions of the objects.

Fitting multivariate Gaussian mixture models to the responses reveals that grasps cluster

around only 1, 2, or 3 modes. Fig 3B shows three distinct modes for object U at orientation 2

in a unitless 2D representation of grasp space. Human grasps cover only a minute portion of

the space of potential grasps. Note that we define the space of potential grasps as the set of all

combinations of thumb and index finger positioning attemptable on the accessible surfaces of

an object (i.e., those not in contact with the table). Fig 3C also shows how, for one representa-

tive condition, different grasps from the same subjects are more clustered than grasps from dif-

ferent subjects, since individuals predominantly selected only one (70%) or two (27%) modes,

and only rarely (3%) grasped objects in three separate locations.

To further quantify how clustered these grasping patterns are we designed a simple metric

of similarity between grasps (see Materials and methods). Fig 3D shows how both between-

and within-subject grasp similarity are significantly higher than the similarity between random

grasps only constrained by accessible object geometry (t(7)=9.96, p=2.2�10-5 and t(7)=26.15,

Fig 3. Human grasps are clustered. (a) Human grasps from Experiment 1. Grasps are represented as thumb (red triangles) and index finger (blue diamonds) contact

positions, connected by dotted black lines. (b) Human grasps (blue blobs) for object U, orientation 2, when projected in a unitless 2D representation of the space of

potential grasps, cluster around three distinct modes. (c) Distribution of thumb contact points on object L, orientation 2. Different colors represent grasps from different

participants. (d) The level (%) of grasp similarity expected for grasps randomly distributed on the object surface (i.e. random combinations of thumb and index finger

positioning attemptable on an object) and the observed level of between- and within-participant grasp similarity, averaged across objects and orientations. Error bars are

95% bootstrapped confidence intervals of the mean. �� p<0.01, ��� p<0.001.

https://doi.org/10.1371/journal.pcbi.1008081.g003
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p=3.1�10-8 respectively). Additionally, within-subject grasp similarity is significantly higher

than between subjects (t(7)=3.89, p=0.0060). Nevertheless, the high similarity between grasps

from different participants demonstrates that different individuals tend to grasp objects in

similar ways. The even higher level of within-subject grasp similarity further demonstrates that

grasp patterns from individual participants are idiosyncratic, which may reflect differences in

the strategies employed by individual participants, or may be related to physiological differ-

ences in hand size, strength, or skin slipperiness. We observe no obvious learning effects across

trial repetitions: between-subject grasp similarity does not change from first to last repetition

across objects and orientations (t(7)=0.62, p=0.56).

Findings reproduce several known effects in grasp selection. Previous research suggests

haptic space is encoded in both egocentric and allocentric coordinates [31], and that grasps are

at least partly encoded in egocentric coordinates to account for the biomechanical constraints

of our arm and hand [19]. Our findings reproduce and extend these observations. If humans

selected grasps in allocentric coordinates tied to an object’s 3D shape, then grasps onto the

same object in different orientations should be located on the same portions of the object but

in different 3D world coordinates. Conversely, if actors take their own effectors into account,

they should grasp objects at different locations depending on the object’s orientation. For each

object we computed grasp similarity across the two orientations in both egocentric (tied to the

observer) and allocentric coordinates (tied to the object). Fig 4A shows that, as the extent of

the object rotation increases, grasp encoding shifts from allocentric to egocentric coordinates.

Across small rotations (object S, 55 degree rotation), grasps are more similar if encoded in allo-

centric coordinates (t(11)=13.90, p=2.5�10-8), whereas for large rotations (object L, 180 de-

grees) grasps are more similar if encoded in egocentric coordinates (t(11)=4.59, p= 7.8�10-4).

Therefore, both 3D shape as well as movement constraints influence grasps.

Fig 4. Spatial encoding and bias. (a) Difference in grasp similarity across orientations when grasps were encoded in object-centered (allocentric) vs human-centered

(egocentric) coordinates, as a function of magnitude of rotation across the two orientation conditions. (b) Average grasp trajectories viewed in the x-y plane (red

curves) from start location towards the objects (always contained within the gray shaded region). The average human grasp (red dot) across conditions is biased

toward shorter reaching movements compared to the object centroids (black dot). In both panels data are means, error bars/regions represent 95% bootstrapped

confidence intervals. ��� p<0.001.

https://doi.org/10.1371/journal.pcbi.1008081.g004
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Fig 4B shows that participants also selected grasps that were on average 26 mm closer to the

starting location than the object centroid (t(11)=9.74, p=9.6�10-7), reproducing known spatial

biases in human grasp selection [15, 28, 30, 32, 33].

Consistent with Kleinholdermann et al. [15] but contrary to previous claims [18–22], our

findings suggest humans care little about torque when grasping lightweight objects (of ~100

g). If actors sought to minimize torque, the selected grasps should be as close as possible to the

CoM. Conversely, if participants were to disregard torque, then grasps should be at least as dis-

tant from the CoM as grasps randomly selected on the surface of the object. Fig 5A plots the

difference between the CoM distance of participant grasps and the average CoM distance of

random grasps, which we name ‘CoM attraction compared to random grasps’. In Experiment

1, grasps were on average 9 mm farther from the CoM than the average distance to the object’s

CoM of grasps uniformly sampled onto the surface of the objects (t(11)=4.53, p=8.6�10-4).

This negative value means that participants grasped the objects towards their extremities, far-

ther from the CoM than even random chance.

Experiment 2: Mass and mass distribution

Humans grasp objects close to their center of mass when high grip torques are possi-

ble and instructions demand the object does not rotate. Due to the low density of beech

wood, even the grasps farthest from the CoM in Experiment 1 would produce relatively low

torques. Therefore, in Experiment 2 we tested whether participants grasp objects closer to

the CoM when higher torques are possible. We did this by using objects of greater mass and

asymmetric mass distributions. Specifically, for each of the shapes in Experiment 1, we

made three new objects, each made of five brass and five wooden cubes: two ‘bipartite’

objects, with brass clustered on one or the other half of the object, and one ‘alternating’

object, with brass and wood alternating along the object’s length. These objects had the

same 3D shapes as in Experiment 1, but were nearly tenfold heavier (Fig 2C, see Materials

and methods).

Fig 5A shows how human grasps are indeed significantly attracted towards the CoM of

heavy objects, presumably to counteract the larger torques associated with higher mass. In

Experiment 2, grasps were on average 11 mm closer to the object CoM than grasps sampled

uniformly from the objects’ surfaces (t(13)=4.89, p= 2.9�10-4), and on average 20 mm closer

than the grasps from Experiment 1 (t(24)=6.60, p= 8.0�10-7). Fig 5B shows how this behavior

was evident already from the very first trial performed by participants, but also that grasps

clustered more toward the object CoM in later trials, presumably as participants refined their

estimates of CoM location (correlation between CoM attraction and trial repetition: r = 0.86,

p = 0.13). Importantly, participants shifted their grasps towards the CoM—not the geometrical

centroid—of the objects (observe how the grasp patterns shift in Fig 5C). Fig 5D shows that

when the object CoM was shifted towards the hand’s starting location, participants did not sig-

nificantly adjust their grasping strategy compared to Experiment 1 (t(13)=0.81, p=0.43). Con-

versely, when the object CoM was in the same position as in Experiment 1, grasps shifted on

average by 8 mm towards the CoM (t(13)=3.92, p=0.0017). When the CoM was shifted away

from the hand’s starting position, grasps were on average 37 mm closer to the CoM compared

to Experiment 1 (t(13)=8.49, p=1.2�10-6), a significantly greater shift than both the near and

same CoM conditions (t(13)=8.66, p=9.2�10-7 and t(13)=7.58, p=4.0�10-6). These differential

shifts indicate that participants explicitly estimated each object’s CoM from visual material

cues.

Even with the heavier objects, participants still systematically selected grasps that were

closer to the starting location than the object centroid (t(13)=4.03, p=0.0014). However, now
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participants exhibited only a 9 mm bias, which was significantly smaller than the 26 mm bias

observed for the light wooden objects in Experiment 1 (t(24)=4.67, p= 9.6�10-5).

Together these findings suggest that participants combine multiple constraints to select

grasp locations, taking into consideration the shape, weight, orientation, and mass distribution

of objects, as well as properties of their own body to decide where to grasp objects. We next

sought to develop a unifying model that could predict these diverse effects based on a few sim-

ple underlying principles.

Fig 5. Mass and mass distribution. (a) Attraction towards the object CoM for grasps executed onto light (Experiment 1) and heavy (Experiment 2) objects compared

to the average CoM distance of grasps uniformly distributed on the object surfaces (zero reference). (b) Attraction towards the object CoM in Experiment 2 as a

function of trial repetition. Red line is the best-fitting regression line through the data (c) Human grasps from Experiment 2 onto object S presented at orientation 2.

(d) Attraction towards the object CoM compared to Experiment 1 grasps (zero reference), for Experiment 2 grasps onto heavy objects whose CoM is closer, the same

distance as, or farther than the light wooden objects from Experiment 1. In panels a, b, and d, data are means, error bars represent 95% bootstrapped confidence

intervals. �� p<0.01, ��� p<0.001.

https://doi.org/10.1371/journal.pcbi.1008081.g005
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Normative model of human grasp selection

Based on the insights gained from our empirical findings, we developed a model to predict

human grasp locations. The model takes as input 3D descriptions of the objects’ shape, mass

distribution, orientation, and position relative to the participant, and computes as output a

grasp cost function, describing the costs associated with every possible combination of finger

and thumb position on accessible surface locations (i.e., those not in contact with table). We

reasoned that humans would tend to grasp objects at or close to the minima of this cost func-

tion, as these would yield the most stable, comfortable grasps. Low cost grasps can then be pro-

jected back onto the object to compare against human grasps. It is important to note that this

is not intended as a process model describing internal visual or motor representations (i.e., we

do not suggest that the human brain explicitly evaluates grasp cost for all possible surface loca-

tions). Rather, it is a normative model for predicting which grasps are optimal under a set of

pre-defined constraints. It provides a single, unifying framework based on a subset of the fac-

tors that are known to influence human grasp selection [15].

For each object, we create a triangulated mesh model in a 3D coordinate frame, from which

we can sample (Fig 6A and 6B). For precision grip, we assume one contact point each for

thumb and index finger. Thus, all possible precision grip grasps can be ordered on a 2D plane,

with all possible thumb contact points along the x-axis, and on the y-axis, all possible index

contacts in the same ordering as for the thumb.

To estimate the cost associated with each grasp, we take the combination of five penalty

functions, determined by the object’s physical properties (surface shape, orientation, mass,

mass distribution) as well as constraints of the human actuator (i.e. the human arm/hand).

Fig 6. A framework that unifies distinct aspects of grasp selection. (a) Mesh model of object in same 3D reference frame as participant poised to execute grasp. (b)

Discrete sampling of the reachable surface defines a 2D space containing all potential combinations of index and thumb contact points on the object. (c) Color-coded

maps showing penalty values for each potential grasp for each penalty function. (d) Overall penalty function computed as the linear combination of maps in (c). (e)

Human grasps projected into 2D penalty-function space neatly align with minimum of combined penalty map.

https://doi.org/10.1371/journal.pcbi.1008081.g006
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Specifically, we consider optimality criteria based on: (i) optimum force closure [17], (ii) mini-

mum torque [18–22], (iii) alignment with the natural grasp axis [19,23–25], (iv) optimal grasp

aperture [26], and (v) optimal visibility [27,28,30] (see Materials and methods for mathemati-

cal definitions). Fig 6C shows maps for each penalty function: white indicates low penalty,

dark blue high penalty. To compare and combine penalty, values are normalized to [0,1].

Force closure: force closure is fulfilled when the two contact-point surface normals, along

which gripping forces are applied, are directed towards each other [17]. Thus, we penalize lat-

eral offsets between the grasp point normals (Fig 7).

Minimum torque: grasping an object far from its CoM results in high torque, which causes

the object to rotate when picked up [18–22]. Large gripping forces would be required to pre-

vent the object from rotating. We therefore penalize torque magnitude (Fig 8).

Natural grasp axis: when executing precision grip grasps, humans exhibit a preferred hand

posture known as the natural grasp axis [19,23–25]. Grasps that are rotated away from this axis

result in uncomfortable or restrictive hand/arm configurations (Fig 9). We therefore penalize

angular misalignment between each candidate grasp and the natural grasp axis (taken from

[24]). Unlike force closure and torque, this penalty map is asymmetric about the diagonal:

swapping index and thumb positioning produces the same force closure and torque penalties,

but changes the penalty for the natural grasp axis by 180 degrees.

Optimal grasp aperture: for two-digit precision grips humans prefer the distance between

finger and thumb at contact (‘grasp aperture’) to be below 2.5 cm [26]. We therefore penalize

grasp apertures above 2.5 cm (Fig 10).

Optimal visibility: our behavioral data, and previous studies, suggest humans exhibit spa-

tial biases when grasping. It has been proposed that these may arise from an attempt to

Fig 7. Force closure. Examples of grasps with (a) low penalty and (b) high penalty force closure.

https://doi.org/10.1371/journal.pcbi.1008081.g007

Fig 8. Torque. Examples of grasps with (a) low penalty and (b) high penalty torque.

https://doi.org/10.1371/journal.pcbi.1008081.g008
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minimize energy expenditures through shorter reach movements [27]. However, Paulun et al.

[28] have shown that these biases may in fact arise from participants attempting to optimize

object visibility. While our current dataset was not designed to untangle these competing

hypotheses, re-analyzing published data [22,30] confirms that object visibility—not reach

length—is most likely responsible for the biases. We therefore penalized grasps that hindered

object visibility (Fig 11). We also designed a penalty function for reach length and verified

that, since reach length and object visibility are correlated in our dataset, employing one or the

other penalty function yields very similar results.

We assume that participants select grasps with low overall costs across all penalty functions.

Thus, to create the overall grasp penalty function, we take the sum of the individual penalty

maps. The minima of this full penalty map represent grasps that best satisfy all criteria simulta-

neously. The map in Fig 6D exhibits a clear minimum: the white region in its lower right

quadrant.

To assess the agreement between human and optimal grasps, we may visualize human

grasps in the 2D representation of the grasp manifold. The red markers in Fig 6E are the

human grasps from object L at orientation 2, projected in 2D and overlain onto the full penalty

map. Human grasps neatly align with the minima of the penalty map, suggesting that human

grasps are nearly optimal in terms of the cost criteria we use.

Model fitting. The simple, equal combination of constraints considered thus far already

agrees with human grasping behavior quite well. However, it is unlikely that actors treat all

optimality criteria as equally important. Different persons likely weight the constraints differ-

ently (e.g., due to strength or hand size). Therefore, we developed a method for fitting full pen-

alty maps to participants’ responses. We assigned variable weights to each optimality criterion,

and fit these weights to the grasping data from each participant, to obtain a set of full penalty

maps whose minima best align with each participant’s grasps (see Materials and methods).

Fig 9. Natural grasp axis. Examples of grasps with (a) low penalty and (b) high penalty grasp axis.

https://doi.org/10.1371/journal.pcbi.1008081.g009

Fig 10. Optimal grasp aperture. Examples of grasps with (a) low penalty and (b) high penalty aperture.

https://doi.org/10.1371/journal.pcbi.1008081.g010
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Model grasps are nearly indistinguishable from measured human grasps. To compare

human and optimal grasps directly, we can sample predicted optimal grasps from around the

minimum of the full penalty map (see Materials and methods) and project back onto the

objects. Fig 12A shows human grasps (left) and unfitted model predictions (right) on a few

representative objects (see S1 Fig for complete set). Human and predicted grasps have similar

size and orientation, and also cover similar portions of the objects.

Fig 12B depicts grasp similarity at the population level, i.e., across participants and between

human and unfitted model grasps. Grasp similarity between participants was computed (for

each object and condition), as the similarity between the medoid grasp of each participant and

the medoid grasp across all others. Grasp similarity between human and model grasps was

computed as the similarity between the medoid unfitted model grasp and the medoid grasp

across all participants.

Unfitted model grasps were significantly more similar to human grasps than chance (t(31)

=9.34, p=1.6�10-10), and effectively indistinguishable from human-level grasps similarity (t(31)

=0.53, p=0.60). Note that this does not mean our current approach perfectly describes human

grasping patterns; it suggests instead that our framework is able to predict the medoid human

grasping patterns nearly as well as the grasps of a random human on average approximate the

medoid human grasp.

Fitting the model can account for individual grasp patterns. In both Experiments, partici-

pants repeatedly grasped the same objects in randomized order. Fig 12C depicts how similar

human and model grasps are to the medoid grasp of each individual participant in each experi-

mental condition. Individual subjects are highly consistent when grasping the same object on sep-

arate trials. Grasps predicted through our framework with no knowledge of the empirical data

were significantly less similar to the medoid grasps of individual humans (t(31)=9.28, p=1.9�10-

10). This is unsurprising, since the unfitted model predicts the average pattern across observers,

but there is no mechanism for it to capture idiosyncrasies of individual humans. Fitting the model

to the human data (see Materials and methods) significantly improved grasp similarity (t(31)

=4.26, p=1.8�10-4). Note however that model grasp patterns fit to a single participant are still dis-

tinguishable from random real grasps by the same individual (t(31)=4.91, p=2.8�10-5).

Force closure, hand posture, and grasp size explain most of human grasp point selec-

tion. The pattern of fitted weights across both experiments (Fig 12D) reveals the relative

importance of the different constraints. Specifically, we find that force closure is the most

important constraint on human grasping, which makes sense because force closure is a physi-

cal requirement for a stable grasp. Next in importance are natural grasp axis and optimal grasp

aperture, both constraints given by the posture and size of our actuator (our hand). In compar-

ison, participants appear to care only marginally about minimizing torque, and almost negligi-

bly about object visibility.

Fig 11. Optimal visibility. Examples of grasps with (a) low penalty and (b) high penalty visibility.

https://doi.org/10.1371/journal.pcbi.1008081.g011

PLOS COMPUTATIONAL BIOLOGY Predicting precision grip grasp locations on three-dimensional objects

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008081 August 4, 2020 11 / 28

https://doi.org/10.1371/journal.pcbi.1008081.g011
https://doi.org/10.1371/journal.pcbi.1008081


Analyzing the patterns of fitted weights confirms our empirical findings. The model

also replicates our main empirical findings in a single step. Fig 12E shows that the relative

importance of torque was much greater for the heavy objects tested in Experiment 2 compared

Fig 12. Model results. (a) Grasping patterns reconstructed through the normative framework (right) closely resemble human grasps onto real objects varying in shape,

orientation, and material (left). Simulated grasp patterns are generated with no knowledge of our human data (i.e. model not fit to human grasps). (b) Population level

grasp similarity, i.e. similarity of human and unfitted model grasps to medoid human grasp across all participants. (c) Individual level grasp similarity, i.e. similarity of

human, unfitted, and fitted model grasps to the medoid grasp of each participant. In panels (b, c), dashed line is estimated chance level of grasp similarity due to object

geometry, bounded by 95% bootstrapped confidence intervals. (d) Pattern of fitted weights across Experiments 1 and 2. (e) Relative weight of the minimum torque

constraint in Experiments 1 and 2. (f) Relative weight of the visibility constraint in Experiments 1 and 2. Data are means; error bars, 95% bootstrapped confidence

intervals. ���p<0.001.

https://doi.org/10.1371/journal.pcbi.1008081.g012
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to the light objects from Experiment 1 (t(24)=7.93, p=3.7�10-8). Conversely, Fig 12F shows

that the relative importance of object visibility instead decreased significantly from Experiment

1 to Experiment 2 (t(24)=2.62, p=0.015). Additionally, by simulating grasps from the fitted

model, we are able to recreate the qualitative patterns of all behavioral results presented in Figs

3,4 and 5 (see S2 Fig).

Experiment 3: Model validation

To further validate the model, we tested whether the model makes sensible predictions on

novel objects and whether the model is robust to perturbations.

Model predictions on novel objects. The model was designed from the insights derived

from Experiments 1 and 2 with polycube objects made of brass and wood. To test whether the

model generalizes beyond this type of object, we selected four mesh models of objects with

smooth, curved surfaces from an in-house database (two familiar, two unfamiliar objects). We

input these meshes to the model and generated grasp predictions (Fig 13A). The model was

instantiated using the weights derived from Experiment 1. Next, we 3D printed these objects

out of light plastic (~80g, comparable to Experiment 1 objects), and asked 14 human partici-

pants to grasp these novel objects. Fig 13B shows how human grasps agree with model predic-

tions. Human and model grasps once again have similar size and orientation, and also cover

similar portions of the objects. Fig 13C confirms this observation: predicted model grasps are

as similar to medoid human grasps as grasps from a random human participant (t(13)=1.21,

p=0.25).

Model perturbation analysis. The model designed thus far receives as input a near-verid-

ical representation of the objects to grasp. However, it is unlikely that humans have access to

such a veridical object representation. We therefore implemented some perturbations to the

inputs and key parameters of the model and observed how robust the model is to these pertur-

bations. Specifically, we tested how model performance in predicting human grasping patterns

from Experiment 3 varies as a functions of these perturbations.

The model input thus far consisted of densely sampled 3D mesh models. It’s unlikely that

humans also have such a dense, accurate 3D representation of an object’s surface. Fig 14A

therefore shows model performance (in terms of similarity with human grasping patterns)

with different levels of surface mesh subsampling. Model performance is robust to relatively

high levels of subsampling, and decreases only once sampled surface locations are on average

more than 4 mm distant from one another (below 5% mesh subsampling).

Fig 13. Model predictions for novel objects align with human grasps. (a) Grasping patterns predicted through the normative framework for novel objects with smooth

and curved surface geometry. (b) Human grasps onto 3D printed versions of the objects align with model predictions. (c) Similarity of human and predicted model

grasps to medoid human grasp across objects and participants. Dashed line is estimated chance level of grasp similarity, bounded by 95% bootstrapped confidence

intervals.

https://doi.org/10.1371/journal.pcbi.1008081.g013
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Since the backside of objects is occluded from view, it is unlikely that participants have an

accurate estimate of the required grip aperture across the whole object. Additionally, since we

constrained participants to two-digit precision grips, grasps above the threshold defined by

Cesari and Newell [26] might be acceptable, as long as these are within a maximum comfort-

able grasp span. Fig 14B shows that indeed model performance is robust to increases in aper-

ture threshold up to 100 mm.

Similarly, humans might also exhibit some tolerance for grasps oriented away from the nat-

ural grasp axis. Given that the ease of a rotation of the arm and hand is likely asymmetric

along different directions, these tolerances likely also vary depending on rotation direction.

Fig 14C shows how model performance does indeed decrease for perturbations of the natural

grip axis along the transverse plane, and this decrease is more steep for clockwise (negative)

rotations, as already suggested by Kleinholdermann and colleagues [15]. Model performance

is instead more robust to perturbations along the sagittal plane (Fig 14D), and particularly for

(positive) counterclockwise rotations in which the thumb tilts below the index finger.

Fig 14. Perturbation results. All panels show model performance (in terms of grasp similarity to human data from Experiment 3) as a function of different

perturbations. Grasp similarity for the original model implementation is shown in green. Red and black dashed lines are respectively human and chance levels of

grasp similarity, bounded by 95% bootstrapped confidence intervals. (a) Model grasp similarity with input meshes subsampled by varying degrees. (b) Model grasp

similarity for model implementations employing increasing aperture thresholds. (c, d) Model grasp similarity for models implemented with deviated natural grasp

axis along the transverse (c) and sagittal (s) planes.

https://doi.org/10.1371/journal.pcbi.1008081.g014
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Discussion

We investigated how an object’s 3D shape, orientation, mass, and mass distribution jointly

influence how humans select grasps. Our empirical analyses showed that grasping patterns are

highly systematic, both within and across participants, suggesting that a common set of rules

governs human grasp selection of complex, novel 3D objects. Our findings reproduce, unify,

and generalize many effects observed previously: (i) both 3D shape and orientation determine

which portion of the object people grasp [8,15,18,19,34–37]; (ii) humans exhibit spatial biases

even with complex 3D objects varying in shape and mass [15,28,30,32,33]; (iii) object weight

modulates how much humans take torque into account when selecting where to grasp objects

[18–22]. We then combined this diverse set of observations into a unified theoretical frame-

work that predicts human grasping patterns strikingly well, even with no free parameters. By

fitting this normative model to human behavioral data, we showed that force closure, hand

posture, and grasp size are the primary determinants of human grasp selection, whereas torque

and visibility modulate grasping behavior to a much lesser extent. We further demonstrated

that the model is able to generate sensible predictions for novel objects and is robust to

perturbations.

3D shape

Behavioral research on the influence of shape on grasping is surprisingly scarce, primarily

employs 2D or simple geometric 3D stimuli of uniform materials, and rarely investigates grasp

selection [8, 18, 19, 34–37]. For example, by using 3D stimuli that only varied in shape by a few

centimeters, Schettino et al. [36] concluded that object shape influences hand configuration

only during later phases of a reaching movement during which subjects use visual feedback to

optimize their grasp. Here, we show that distinct 3D shapes are grasped in systematically dis-

tinct object locations, and our behavioral and model analyses can predict these locations

directly from the object 3D shape.

Orientation

When grasping spheres or simple geometrical shapes, humans exhibit a preferred grasp orien-

tation (the NGA) [19,23–25], and most previous work on how object orientation influences

grasping has primarily focused on hand kinematics [18,22,35,38]. Conversely, with more com-

plex 3D shapes we show that the same portion of an object is selected within a range of orienta-

tions relative to the observer, whereas for more extreme rotations the grasp selection strategy

shifts significantly. Therefore, object shape and orientation together determine which portion

of an object will be grasped, and thus the final hand configuration.

Spatial biases

The spatial biases we observe are consistent with participants attempting to increase object vis-

ibility [28,30], and our data also replicate the finding that these biases are reduced when object

weight increases [22,28].

Material/weight/torque

Goodale et al. [18] were among the first to show that participants tend to grasp objects through

their CoM, presumably to minimize torque. Lederman and Wing [19] found similar results,

yet in both studies low-torque grasps also correlated with grasps that satisfied force closure

and aligned with the natural grasp axis. Kleinholdermann et al. [15] found torque to be nearly

irrelevant in grasp selection, yet Paulun et al. [22] observed that grasp distance to CoM was
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modulated by object weight and material. More recent work by Paulun et al. has further

shown that participants are fairly accurate at visually judging the location of the CoM even for

bipartite objects made of two different materials [39]. Our findings resolve these conflicting

findings. By using stimuli that decorrelate different aspects of grasp planning, we find that

shape and hand configuration are considerably more important than torque for light weight

objects, and that the importance of minimizing torque scales with mass. Additionally, shifting

an object’s mass distribution significantly attracted grasp locations towards the object’s shifted

CoM, demonstrating that participants could reliably combine global object shape and material

composition to successfully infer the object’s CoM.

Modelling grasp selection

Previous models of grasping have mainly focused on hand kinematics and trajectory synthesis

[2–6] whereas we attempt to predict which object locations will be selected during grasping.

Our modelling approach takes inspiration from Kleinholdermann et al. [15], which to the best

of our knowledge is the only previous model of human two-digit contact point selection, but

only for 2D shape silhouettes. In addition to dealing with 3D objects varying in mass, mass dis-

tribution, orientation, and position, our modeling addresses several limitations of previous

approaches. The fitting procedure quantifies the relative importance of different constraints,

and can be applied to any set of novel objects to test how experimental manipulations affect

this relative weighting. Additionally, while model fitting significantly improved the similarity

between model and individual participant grasps, the agreement was not perfect. This suggests

that grasp planning may involve additional, undiscovered constraints, which our approach

would be sensitive enough to detect. The modular nature of the model specifically allows addi-

tional constraints to be included, excluded or given variable importance. For example, we

know that end-state comfort of the hand plays a role in grip selection [40,41], yet the tradeoff

between initial and final comfort is unclear [42]. By varying the participants’ task to include

object rotations, and by including a penalty function penalizing final hand rotations away

from the natural grasp axis, it would be possible to assess the relative importance of initial,

final (or indeed intermediate) hand configurations on grasp planning. Relatedly, the effect of

obstacles (and self-obstacles, such as the vertically protruding portions of some of the objects

employed in this study) could also be assessed. The presence of obstacles could affect grasp

selection by requiring reach-to-grasp trajectories that avoid an obstacle, although previous

research has shown that forcing different hand paths does not affect selected grasp locations

[25]. Alternatively, the presence of obstacles might alter the configuration of the arm and hand

during a grasp [43], which could be incorporated into the model by modifying the grip com-

fort penalties.

Previous literature has also shown that object surface properties such as curvature [13], tilt

[14], and friction [44,45] modulate the fingertip forces employed during grasping. While the

current study was not designed to examine how these factors influence grasp selection, the cur-

rent model is already able to predict grasp patterns for objects with curved surfaces, even if not

perfectly. Model performance with these objects could likely be improved by including into

our framework penalty functions that take into account local surface structure and friction.

Incorporating friction into the model could even improve model performance for our com-

posite objects from Experiment 2, as wood and brass may have different friction coefficients.

Since surface friction plays a decisive role in determining force closure, friction coefficients

could even be directly integrated into the force closure computations. Friction is also a particu-

larly interesting test case for our assumption of a weighted linear combination of costs, as it

may interact with other factors. When friction is low, it could cause the cost of torque to be
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upregulated, to avoid slipping [22]. This would require the addition of parameters describing

interactions between factors. Alternatively, friction and torque might be unified into a single

penalty function capturing the magnitude of grip force required to avoid slippage. However,

incorporating friction into the model would be non-trivial, since the coefficient of friction

between skin and different materials depends on several factors, including temperature, hydra-

tion, and age [46].

The model should also be extended to multi-digit grasping, by adding to each penalty func-

tion three dimensions for each additional finger considered (the x,y,z coordinates of the con-

tact point). This approach is consistent with (and complementary to) the approach by Smeets

and Brenner [2,5], who posit that grasping is a combination of multiple pointing movements.

Given that human participants adjust the number of digits they employ to grasp an object

depending on grip size and object weight [26], multiple size/weight thresholds could be

employed to determine the preferred multi-digit grip. Future models should also generalize

from contact points to contact patches of nonzero area, as real human grasp locations are not

only points but larger areas of contact between digit and object. To facilitate such develop-

ments, we provide all data and code (doi: 10.5281/zenodo.3891663).

Neuroscience of grasping

While our model is not intended as a model of brain processes, there are several parallels with

known neural circuitry underlying visual grasp selection (for reviews see [47–49]). Of particu-

lar relevance is the circuit formed between the Ventral Premotor Cortex (Area F5), Dorsal Pre-

motor Cortex (Area F2), and the Anterior Intraparietal Sulcus (AIP). Area F5 exhibits 3D-

shape-selectivity during grasping tasks and is thought to encode grip configuration given

object shape [50–52], whereas area F2 encodes the grip-wrist orientation required to grasp

objects under visual guidance [53]. Both regions exhibit strong connections with AIP, which

has been shown to represent the shape, size, and orientation of 3D objects, as well as the shape

of the handgrip, grip size, and hand-orientation [54]. Additionally, visual material properties,

including object weight, are thought to be encoded in the ventral visual cortex [55–59], and it

has been suggested that AIP might play a unique role in linking components of the ventral

visual stream involved in object recognition to hand motor system [60]. Therefore, the neural

circuit formed between F5, F2, and particularly AIP is a strong candidate for combining the

multifaceted components of visually guided grasping identified in this work [61–65]. Combin-

ing targeted investigations of brain activity with the behavioral and modelling framework pre-

sented here holds the potential to develop a unified theory of visually guided grasp selection.

Materials and methods

Ethics statement

All procedures were approved by the local ethics committee of the Department of Psychology

and Sports Sciences of the Justus-Liebig University Giessen (Lokale Ethik-Kommission des

Fachbereichs 06, LEK-FB06; application number: 2018-0003) and adhered to the declaration

of Helsinki. All participants provided written informed consent prior to participating.

Participants

Twelve naïve participants (5 males and 7 females between the ages of 20 and 31, mean age:

25.2 years) participated in Experiment 1. A different set of fourteen naïve participants (9 males

and 5 females between the ages of 21 and 30, mean age: 24.4 years) participated in Experiment

2. An additional, different set of fourteen naïve participants (5 males and 9 females between
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the ages of 19 and 58, mean age: 25.1 years) participated in Experiment 3. Participants were

students at the Justus Liebig University Giessen, Germany and received monetary compensa-

tion for participating. All participants reported having normal or corrected to normal vision

and being right handed.

Apparatus

Experiments 1 and 2 were programmed in Matlab version R2007a using the Optotrak Toolbox by

V. H. Franz [66]. Participants were seated at a table with their head positioned in a chinrest (Fig

2A), in front of an electronically controlled pane of liquid crystal shutter glass [67], through which

only part of the table was visible and which became transparent only for the duration of a trial.

Objects were placed at a target location, 34 cm from the chinrest in the participant’s sagittal plane.

Small plastic knobs placed on participants’ right side specified the hand starting positions. A plate

(28.5 cm to the right of the target location and with a 13 cm diameter at 26 cm from start position

1 in the participant’s sagittal plane) specified the movement goal location. We tracked participants’

fingertip movements with sub-millimeter accuracy and resolution using an Optotrak 3020 infra-

red tracking system. The Optotrak cameras were located to the left of the participants. To record

index finger and thumb movement, sets of three infrared markers (forming a rigid body) were

attached to the base of the participants’ nails. The fingertip and tip of the thumb were calibrated

in relation to the marker position, as participants grasped a wooden bar with a precision grip,

placing their fingertips at two known locations on the bar.

Experiment 3 was programmed in Matlab version R2019b using the Motom Toolbox [68].

Participants were seated at a table with their head positioned in a chinrest and had their eyes

open only for the duration of the movement execution (Fig 15A). Objects were placed at a tar-

get location, 36 cm from the chinrest in the participant’s sagittal plane. A piece of tape placed

30 cm to the right of the chinrest specified the hand starting position. A plate (30 cm to the

right of the target location and with an 18 cm diameter at 30 cm from the start position in the

participant’s sagittal plane) specified the movement goal location. We tracked participants’ fin-

gertip movements using an Optotrak Certus infrared tracking system. The Optotrak cameras

were located to the left of the participants. To record index finger and thumb movement, sets

of three infrared markers (forming a rigid body) were attached to the base of the participants’

nails. The fingertip and tip of the thumb were calibrated in relation to the marker position, as

participants touched another marker using a precision grip, placing their finger- and thumb

tip at the center of the marker one after the other.

Stimuli

Experiment 1: Light objects made of wood. Four differently shaped objects (defined as

objects L, U, S and V; Fig 2B) each composed of 10 wooden (beech) cubes (2.53 cm3), served as

stimuli. Objects were fairly light with a mass of 97 g. Two of the objects featured cubes stacked

on top of each other, whereas the other two objects were composed exclusively of cubes lying

flat on the ground. The objects were presented to the participants at one of two orientations.

Across orientations, object L was rotated by 180 degrees, objects U and V were rotated by 90

degrees, and object S was rotated by 55 degrees. Fig 2B shows the objects positioned as if

viewed by a participant.

Experiment 2: Heavy composite objects made of wood and brass. For each of the 4

shapes from Experiment 1, we created 3 new objects (12 in total) to serve as stimuli for Experi-

ment 2 (Fig 2C). Individual cubes were made of either wood or brass. The objects were com-

posed of 5 cubes of each material, which made them fairly heavy with a mass of 716g. By

reordering the sequence of wood and brass cubes, we shifted the location of each shape’s CoM.
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For each shape we made one object in which brass and wooden cubes alternated with one

another, and two bipartite objects, where the 5 brass cubes were connected to one another to

make up one side of the object with the wooden cubes making up the other side. This configu-

ration was also inverted, (i.e., wooden and brass cubes switched locations). The ‘alternating’

objects had approximately the same CoM as their wooden counterparts (mean ± sd distance:

5.1±2.5 mm). Conversely, the CoM of bipartite objects was noticeably shifted to one side of the

object compared to their wooden counterparts (mean ± sd distance: 33.3±4.4 mm). The CoM

locations for all stimuli are shown in S3 Fig. All objects were presented at the same two orien-

tations as Experiment 1.

Experiment 3: Curved 3D-printed object. Four novel, differently shaped objects were

3D-printed. They were made from a yellow plastic with a stabilizing mesh inside. Two objects

were abstract, curved shapes objects (defined as ‘swan’ (64g) and ‘blob’ (121g), the other two

objects were known shapes: a cat (72g) and a croissant (74g). All objects were presented to par-

ticipants in one orientation, as displayed in Fig 15B.

Object meshes. For Experiments 1 and 2 triangulated mesh replicas of all objects were

created in Matlab; each cube face consisted of 128 triangles. For Experiment 3 we selected

non-uniform mesh model objects from an in-house database, each mesh consisting of between

4500 and 9000 triangles. To calibrate mesh orientation and position, we measured, using the

Optotrak, four non planar points on each object at each orientation. We aligned the model to

the same coordinate frame employed by the Optotrak using Procrustes analysis.

Procedure

Experiments 1 and 2. Prior to each trial, participants placed thumb and index finger at a

pre-specified starting location. In Experiment 1, two start locations were used (start 1 at 28 cm

Fig 15. Setup and stimuli for Experiment 3. (a) Experimental setup. Seated participants performed grasping movements with their right hand. Following an

auditory signal, they opened their eyes, and moved from the starting position to the object and grasped it with a precision grip. They transported and released the

object at the goal position and returned to the start position. (b) We employed four 3D-printed objects. Two objects had an abstract shape (that here we name

‘swan’ and ‘blob’), the other two objects were printed versions of a croissant and a cat. They were presented to the participant in the orientations displayed in here.

https://doi.org/10.1371/journal.pcbi.1008081.g015
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to the right of the chinrest in the participant’s coronal plane and 9.5 cm forward in the sagittal

plane; start 2 9 cm further to the right and 3 cm further forward, 23 cm from the center of the

goal plate). Given that we observed no effect of starting position in our data, in Experiment 2

only the first starting location was employed. When the subject was at the correct start posi-

tion, the experimenter placed one of the stimulus objects at the target location behind the

opaque shutter screen. Each object could be presented at one of two orientations with respect

to the participant. The experimenter could very precisely position each object at the correct

location and orientation by aligning two small groves under each object with two small pins

on the table surface.

Once both stimulus and participant were positioned correctly, a tone indicated the begin-

ning of a trial, at which point the shutter window turned translucent. Participants were then

required to pick up the object using only forefinger and thumb and place it at the goal location.

Participants had 3 seconds to complete the task before the shutter window turned opaque. In

Experiment 1, no instructions were given regarding how the objects had to be transported, yet

we observed that participants never allowed the objects to rotate. Therefore, to match the

movement task across experiments, in Experiment 2 participants were instructed to keep the

objects as level as possible.

Experiment 1 had sixteen conditions: two starting locations, four wooden objects of differ-

ent shapes, each object presented at two orientations. Each participant repeated each condition

five times (eighty trials per participant).

Experiment 2 had thirty-six conditions: twelve distinct objects (four shapes in three mate-

rial configurations) presented at two orientations. Half of the participants handled only shapes

L and V, the other half handled shapes U and S. Each participant repeated each condition

seven times (eighty-four trials per participant). In both experiments trial order was

randomized.

Following each trial, the experimenter visually inspected the movement traces to determine

whether the trial was successful or not. Unsuccessful grasps were marked as error trials, added

to the randomization queue, and repeated.

Experiment 3. Prior to each trial, participants placed thumb and index finger at the start-

ing location, closed their eyes, and the experimenter placed one of the stimulus objects at the

target location. The experimenter could precisely position each object by aligning it with its

outline, drawn on millimeter paper. Once both stimulus and participant were positioned cor-

rectly, a tone indicated the beginning of a trial, at which point the participants opened their

eyes. Participants were then required to pick up the object using only forefinger and thumb

and place it at the goal location. Participants had 3 seconds to complete the task. Each partici-

pant picked up each object seven times (28 trials per participant). Trial order was randomized.

Following each trial, the experimenter visually inspected the movement traces to determine

whether the trial was successful or not. Unsuccessful grasps were marked as error trials, and

repeated immediately.

Error trials. A total of 397 error trials (13.8% of trials from Experiment 1, 13.9% from

Experiment 2, and 6.9% from Experiment 3) were not analyzed. Trials were deemed unsuc-

cessful when participants did not conclude the movement within the allotted time (10.1% of

error trials in Experiment 1, 41.4% of error trials in Experiment 2, and 0% in Experiment 3),

and/or when tracking was lost (94.2% of error trials in Experiment 1, 88.7% of error trials in

Experiment 2, and 100% of error trials in Experiment 3), or when participants placed the

objects too hastily on the goal location, which resulted in the objects toppling over off the goal

plate where they were supposed to rest (this occurred only twice throughout the study). Note

that there was some overlap between causes of error. The trajectories of lost-tracking error tri-

als, where the data are available, fall within the clusters of trajectories of corresponding non-
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error trials in 92.2% and 99.0% of cases across Experiments 1 and 2 respectively. In Experiment

3 the experimenter manually recorded grasp locations for error trials, and these locations are

all represented in the final dataset. It is therefore unlikely that excluded error trials differed

strongly from the data included in our analyses.

Training

At the beginning of the experiments, each participant completed six practice trials in Experi-

ments 1 and 2 (using a Styrofoam cylinder in Experiment 1, and by lifting random objects

from the shapes not used in that participant’s run in Experiment 2) and five practice trials in

Experiment 3 (using the wooden L-object from Experiment 1). This was done to give partici-

pants a sense for how fast their movement should be in order to complete the entire movement

within three seconds. Prior to Experiment 2, participants were familiarized with the relative

weight of brass and wood using two rectangular cuboids of dimensions 12.5x2.5x2.5 cm, one

of wood (50 g) and one of brass (670 g). Practice trial data were not used in analyses. Prior to

Experiment 3, participants were familiarized with the weight of all four test objects by having

each object placed on the flat, extended palm of their right hand.

Analyses

All analyses were performed in Matlab version R2018a. Differences between group means

were assessed via paired or unpaired t-tests, or through Pearson correlation, as appropriate.

Values of p<0.05 were considered statistically significant.

Contact points. Contact points of both fingers with the object were determined as the fin-

gertip coordinates at the time of first contact, projected onto the surface of the triangulated

mesh models of the object. The time of contact with the object was determined using the meth-

ods developed by Schot et al. [69] and previously described in Paulun et al. [22].

Grasp similarity. We described each individual grasp G
!

as a 6D vector of the x-, y-, z-

coordinates of the thumb and index finger contact points:

G
!
¼ ½xT; yT; zT; xI; yI; zI�

To compute the similarity S between two grasps G1
�!

and G2
�!

, we first computed the Euclidian

distance between the two 6D grasp vectors. We then divided this distance by the largest possible

distance between two points on the specific object Dmax, determined from the mesh models of the

objects. Finally, similarity was defined as 1 minus the normalized grasp distance, times 100:

S ¼ 100 � 1 �
k G1
�!
� G2
�!

; k

Dmax

 !

In this formulation, two identical grasps, which occupy the same point in a 6D space, will

be 100% similar, whereas the two farthest possible grasps onto a specific object will be 0% simi-

lar. Within-subject grasp similarity was the similarity between grasps from the same partici-

pant to the participant’s own medoid grasp. Between-subject grasp similarity was the

similarity between the medoid grasp of each participant and the medoid grasp across all other

participants.

Normative model

The model takes as input 3D meshes of the stimuli and outputs a cost function describing the

costs associated with every possible combination of finger and thumb position on the
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accessible surface locations of our objects (i.e., those not in contact with the table plane). First,

we define the center of each triangle in the mesh as a potential contact point. Then, given all

possible combinations of thumb and index finger contact points CPT
��!

¼ ½xT; yT; zT�; CPI
��!
¼

½xI; yI; zI�, the surface normal at both contact points nT
�! ¼ ½xnT; y

n
T; z

n
T�; nI
!¼ ½xnI ; y

n
I ; z

n
I �, and

the CoM of the object CoM
���!

¼ ½xCoM; yCoM; zCoM�, the five penalty functions we combined into a

normative model of grasp selection were defined as follows:

Force closure. For two-digit grasping, a grasp fulfills force closure when the grasp axis

connecting thumb and index contact points lies within the friction cones resulting from the

friction coefficient between object and digits [17]. A grasp that does not fulfill force closure

will not be able to lift and freely manipulate the object, no matter the amount of force applied

at the fingertips. A grasp perfectly fulfills force closure when the grasp axis is perfectly aligned

with the vectors along which gripping forces are applied, which are the opposite of the con-

tact-point surface normals. Therefore, we defined the force closure penalty function as the

sum of the angular deviances (computed using the atan2 function) of the grasp axis from both

force vectors FT
�!
¼ � nT

�!; FI
!
¼ � nI
!:

PFCðCPT
��!

;CPI
��!
Þ ¼ atan2ðk FT

�!
� ðCPI
��!
� CPT
��!
Þk; FT
�!
� ðCPI
��!
� CPT
��!
ÞÞ

þ atan2ðkFI
!
� ðCPT
��!
� CPI
��!
Þk; FI
!
� ðCPT
��!
� CPI
��!
ÞÞ

Torque. If a force is applied at some position away from the CoM, the object will tend to

rotate due to torque, given by the cross product of force vector and lever arm (the vector con-

necting CoM to the point of force application). Under the assumption that is possible to apply

forces at the thumb and index contact points that counteract the force of gravity Fg
�!

, we can

compute the total torque of a grip as the sum of torques exerted by each contact point. There-

fore, we defined the torque penalty function as the magnitude of the total torque exerted by a

grip:

PTðCPT
��!

;CPI
��!
Þ ¼ kðCoM

���!
� CPT
��!
Þ � � Fg

��!
þ ðCoM
���!

� CPI
��!
Þ � � Fg

��!
k

Natural grasp axis. Schot, Brenner, and Smeets [24] have carefully mapped out how

human participants grasp spheres placed at different positions throughout the peripersonal

space, and provide a regression model that determines the naturally preferred posture of the

arm when grasping a sphere. We input the configuration of our current experimental setup

into the regression model developed by these authors, and found the natural grasp axis for our

participants to be NGA
���!

¼ ½0:49 0:87 0�. We therefore defined the natural grasp axis penalty

function as the angular deviance from this established natural grasp axis:

PNGAðCPT
��!

;CPI
��!
Þ ¼ atan2ðkNGA

���!
� ðCPI
��!
� CPT
��!
Þk;NGA
���!

� ðCPI
��!
� CPT
��!
ÞÞ

Optimal grasp aperture for precision grip. Cesari and Newell [26] have shown that,

when free to employ any multi-digit grasp, human participants selected precision grip grasps

only for cubes smaller than 2.5 cm in length. As cube size increases, humans progressively

increase the number of digits employed in a grasp. Therefore, since our participants were

instructed only to employ precision grip grasps, we defined the optimal grasp aperture penalty

function as 0 for grasp sizes smaller than 2.5 cm, and as a linearly increasing penalty for grasp
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sizes larger than 2.5 cm:

POGAðCPT
��!

;CPI
��!
Þ ¼

0; if kCPI
��!
� CPT
��!
k < 25mm

kCPI
��!
� CPT
��!
k � 25; if kCPI

��!
� CPT
��!
k > 25 mm

(

In pilot work, we observed that a penalty map linearly increasing from 0 cm worked equally

as well as one linearly increasing from 2.5 cm. In Experiment 3 we further observed that

increasing this threshold up to 10 cm did not hinder model performance. However, construct-

ing this penalty function with the 2.5 cm threshold motivated by previous literature will allow

us, in future work, to construct penalty functions with multiple thresholds for multi-digit

grasping, as those observed by Cesari and Newell [26].

Object visibility. Under the assumption that humans are attempting to minimize the por-

tion of the objects hidden from view by their hand, we defined the optimal visibility penalty

function as the proportion of object still visible during each possible grasp. We first defined

the line on the XZ plane that passes through the thumb and index finger contact points. We

made the simplifying assumption that, given all possible surface points on the object SPTOT,

the surface points SPOCCðCPT
��!

;CPI
��!
Þ that fall to the side of the line where the hand is located

will be occluded. Therefore, the object visibility penalty function was defined as:

POGA CPT
��!

;CPI
��!

� �
¼

LengthðSPOCCðCPT
��!

;CPI
��!
ÞÞ

LengthðSPTOTÞ

Overall grasp penalty function. To obtain the overall grasp penalty function, each grasp

penalty function was first normalized to the [0 1] range (i.e., across all possible grasps for each

given object, independently of the other objects). Then, we took the sum of the individual pen-

alty functions:

POðCPT
��!

;CPI
��!
Þ

¼ PFCðCPT
��!

;CPI
��!
Þ þ PTðCPT

��!
;CPI
��!
Þ þ PNGAðCPT

��!
;CPI
��!
Þ þ POGAðCPT

��!
;CPI
��!
Þ

þ PRTðCPT
��!

;CPI
��!
Þ

For display purposes this final function was normalized to the [0 1] range. The minima of

this overall grasp penalty function represent the set of grasps that best satisfy the largest num-

ber of constraints at the same time.

Model fitting. In both Experiments 1 and 2, human participants executed repeated grasps

to the same objects at each orientation. To fit the overall grasp penalty function to these

human data, for each participant in each condition we first defined a human grasp penalty

function PHðCPT
��!

;CPI
��!
Þ in which all grasps selected by a participant onto an object were set to

have 0 penalty, and all grasps that had not been selected were set to have a penalty of 1. Then,

we fit the function:

PO;f itðCPT
��!

;CPI
��!
Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

i

wi � PiðCPT
��!

;CPI
��!
Þ

2

s

to the human grasp penalty function. More specifically, we employed a nonlinear least-squares

solver to search for the set of weights wi = [wFC;wT;wNGA;wOGA;wRT] that minimized the
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function:

FðwiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RðCPT
��!

;CPI
��!
Þ

q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

i

wi � PiðCPT
��!

;CPI
��!
Þ

2

s

� PHðCPT
��!

;CPI
��!
Þ

2

4

3

5

i.e. we searched for the set of weights for which PO,fit best approximated the human grasp pen-

alty function PH. The solver employed the trust-region-reflective algorithm; we set the lower

and upper bounds of the weights to be 0 and 1, and 0.2 as the starting value for all weights. The

number of non-selected grasps with PHðCPT
��!

;CPI
��!
Þ ¼ 1 vastly outnumbered the few selected

grasps for which PHðCPT
��!

;CPI
��!
Þ ¼ 0. To avoid overfitting the model to the regions of the grasp

space where PHðCPT
��!

;CPI
��!
Þ ¼ 1, we designed RðCPT

��!
;CPI
��!
Þ as a regularization function which

served to give equal importance to high and low penalty grasps in the human grasp penalty

function. Thus, for grasps where PHðCPT
��!

;CPI
��!
Þ ¼ 0; RðCPT

��!
;CPI
��!
Þ was equal to the number of

times the participant had selected that specific grasp. For grasps where PHðCPT
��!

;CPI
��!
Þ ¼ 1

instead, R CPT
��!

;CPI
��!

� �
¼

NG;selected
NG;non� selected

; where NG,selected was the total number of grasps performed

by the participant onto the object, and NG,non−selected was the total number of non-selected

grasps within the grasp manifold. This way for both selected and non-selected grasp regions,

the sum of RðCPT
��!

;CPI
��!
Þ was NG,selected, and both regions of grasp space were accounted for

equally during the fitting.

Predicting grasps. The minima of both the equally weighted (non-fitted) and the fitted

overall grasp penalty functions represent the set of grasps predicted to be optimal under the

weighted linear combination of the five penalty functions included in our normative model. To

visualize these predicted optimal grasps, we sampled them from the minima of the penalty func-

tions. First, we removed all grasps with penalty values greater than the lower 0.1th percentile.

This percentile value was selected to approximately match the proportion of grasp space actually

covered by human grasps. The remaining grasps were therefore all optimal or near-optimal.

From this subset, we then randomly selected (with replacement) a number of grasps equal to

the number of grasps executed by the human participants. The probability with which any one

grasp was selected was set to be 1 minus the grasp penalty, thus grasps with zero penalty had the

highest probability of being selected. These sampled grasps can then be projected back onto the

objects for visualization purposes (Figs 12A and 13A), or they can be directly compared to

human grasps using the grasp similarity metric described above (Figs 12B, 12C and 13C).

Supporting information

S1 Fig. Human and model grasping patterns for Experiments 1 and 2. Grasping patterns

from human participants (left), unfitted model (middle), and fitted model (right). (a) Grasping

patterns on wooden objects from Experiment 1. (b) Grasping patterns on mixed material

objects from Experiment 2.

(PDF)

S2 Fig. Pattern of empirical results from Experiments 1 and 2 recreated from simulating

grasps from the fitted model. Panels are the same as in Figs 3, 4 and 5 of the main manu-

script, except that the data are simulated from the model. The grasp trajectories in panel (4b)

are from the human data, to highlight how the model correctly reproduces the biases in

human grasping patterns. Panel 5b is omitted since the model cannot learn to refine CoM esti-

mates.

(PDF)
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S3 Fig. Location of the center of mass for the stimuli employed in Experiments 1 and 2.

The center of mass of the light wooden objects from Experiment 1 is shown as a black dot. The

centers of mass for the heavy alternate and bipartite wood/brass objects from Experiment 2 are

shown as red dots and squares respectively.

(PDF)
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